Boosted Varying-Coefficient Regression Models for Product Demand Prediction
نویسندگان
چکیده
منابع مشابه
Boosted Varying-Coefficient Regression Models for Product Demand Prediction
Estimating the aggregated market demand for a product in a dynamic market is critical to manufacturers and retailers. Motivated by the need for a statistical demand prediction model for laptop pricing at Hewlett-Packard, we have developed a novel boosting-based varying-coefficient regression model. The developed model uses regression trees as the base learner, and is generally applicable to var...
متن کاملVarying-Coefficient Functional Linear Regression Models
We propose in this work a generalization of the functional linear model in which an additional real variable influences smoothly the functional coefficient. This leads us to build a varying-coefficient regressionmodel for functional data. We propose two estimators based respectively on conditional functional principal regression and on local penalized regression splines and prove their pointwis...
متن کاملInference for Covariate Adjusted Regression via Varying Coefficient Models
We consider covariate adjusted regression (CAR), a regression method for situations where predictors and response are observed after being distorted by a multiplicative factor. The distorting factors are unknown functions of an observable covariate, where one specific distorting function is associated with each predictor or response. The dependence of both response and predictors on the same co...
متن کاملVarying-coefficient functional linear regression
NCSU, Princeton University, and UC-Davis Abstract: Functional linear regression analysis aims to model regression relations which include a functional predictor. The analogue to the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If in addition one has scalar predictors, ...
متن کاملQuantile Regression in Partially Linear Varying Coefficient Models by Huixia
Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2014
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2013.778777